字形相似別字之自動校正方法 (Automatic Correction for Graphemic Chinese Misspelled Words) [In Chinese]
نویسندگان
چکیده
No matter that learning Chinese as a first or second language, a quite important issue, misspelled words, needs to be addressed. Many studies proposed that there was a suggestion of correcting misspelled words for students who are still schooling as well as a suggestion of teaching and learning strategies of Chinese characters for teachers. Although in schooling, it does to prevent students who do lots of precautions and corrections from generating misspelled words; students sometimes are unconscious of their misspelled words while writing. As a result, in addition to emphasize the recognition of misspelled words in teaching, mentioning how to prevent from generating misspelled words during the process of using words becomes a critical issue. Nevertheless, it is not an easy matter to find misspelled words automatically and correctly within documents by using formula. Currently, there are researchers conducting research on graphemic misspelled words detection and applying it to Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)
منابع مشابه
A Hybrid Approach for Automatic Classification of Chinese Unknown Verbs
本論文合併兩種方法預測未知動詞的詞類。第一種方法為規則法,即從訓練 語料中歸納出未知動詞組成的構詞規律,分成兩個主要的判斷方式:一、依 照未知動詞的組成的關鍵字決定其分類。二、依照未知動詞的構成組合決定 其分類。 關鍵字法首先將動詞依長度分為四組。第一組為二字詞、三字詞、四字詞、 五字以上的詞彙。在對實際語料的觀察下,發現不同詞長的動詞結構相異, 因此將語料依詞長分組。例如:三字詞可訓練出「好」、「出」兩條規則決 定動詞的詞類,其他長度的未知動詞並沒有這兩條規則,另外「化」規則不 適用於二字動詞。 規則法的第二部分為依照構成組合決定其分類。在觀察未知動詞時,發現有 部分未知動詞的組合很具有規律,我們就將訓練語料中未知動詞的組合做個 歸納,得到九種組合。在十次實驗中,規則法可以處理的未知動詞平均約為 23.19%,猜測正確的比例為 91.67%。 二、相似法為利用與未知動詞相似的例子來...
متن کامل相似度比率式鑑別分析應用於大詞彙連續語音辨識 (Likelihood Ratio Based Discriminant Analysis for Large Vocabulary Continuous Speech Recognition) [In Chinese]
在近十年來所發展出的自動語音辨識(automatic speech recognition, ASR)技術中,仍 有許多研究者嘗試僅藉由前端處理來產生具有鑑別性的語音特徵,而獨立於後端模型訓 練與分類器特性。本論文即在此思維下提出嶄新的鑑別式特徵轉換方法,稱為普遍化相 似度比率鑑別分析(generalized likelihood ratio discriminant analysis, GLRDA),其旨在利 用相似度比率檢驗(likelihood ratio test)的概念尋求一個維度較低的特徵空間。在此子空 間中,我們不僅考慮了全體資料的異方差性(heteroscedasticity),即所有類別之共變異矩 陣可被彈性地視為相異,並且在分類上,因著我們也將類別間最混淆之情況(由虛無假 設(null hypothesis)所描述)的發生率降至最低,而達到有助於分類正確率提升的效...
متن کامل完全基於類神經網路之語音合成系統初步研究 (A Preliminary Study on Fully Neural Network-based Speech Synthesis System) [In Chinese]
A Preliminary Study on Fully Neural Network-based Speech Synthesis System 廖書漢 SHU-HAN Liao ,蔡亞伯 YaBo Chai , 廖元甫 a Yuan-Fu Liao, a 國立台北科技大學電子工程系 [email protected], [email protected], [email protected] 摘要 傳統的語音合成使用先文字分析後語音合成的架構,但是這種兩階段的作法, 通常會有,若前級分析錯誤,就會影響後級合成,且無法挽救的問題。因此,在 本論文中我們希望嘗試把前後級,全部都改成以類神經網路實現,以便將來可以 直接合成一個大的端對端語音合成類神經網路。主要的想法是,直接以字元串為 輸入單位,並盡量用大量未標記語料,進行非監督式類神經網路訓練。我們的系 統包含四個子網路,分...
متن کاملAutomatic labeling of troponymy for Chinese verbs
以同義詞集與詞彙語意關係架構而成的詞彙知識庫,如英語詞網 (Wordnet)、歐語詞 網 (EuroWordnet)等,已有充分的研究,詞網的建構也已相當完善。基於相同的目的,中 研院語言所亦已建立大規模之中文詞彙網路 (Chinese Wordnet,CWN),旨在提供完整的 中文辭彙之詞義區分。然而,在目前之中文詞彙網路系統中,由於目前主要是採用人為判 定來標記同義詞集之間的語意關係,因此這些標記之數量尚未達成可行應用之一定規模。 因此,本篇文章特別針對動詞之間的上下位詞彙語意關係 (Troponymy),提出一種自動標 記的方法。我們希望藉由句法上特定的句型 (lexical syntactic pattern),建立一個能夠自 動抽取出動詞上下位的系統。透過詞義意判定原則的評估,結果顯示,此系統自動抽取出 的動詞上位詞,正確率將近百分之七十。本研究盼能將本方法應用於正在發展中...
متن کامل以語言模型判斷學習者文句流暢度(Analyzing Learners 'Writing Fluency Based on Language Model)[In Chinese]
由於現代科技以及 3C 產品的普及,使得孩子頻繁的接觸電視、網路、手機...等,因此 容易缺乏與人之間互動、溝通以及情感的表達,相對的,學生寫的作文常常是以流水帳 交代經過,有的學校甚至不考作文,但隨著教育政策的變動,國中教育會考加入了作文 評量的項目,使的作文再度受到學生及家長的重視。可是受限於學校教學時數,作文較 弱的學生容易缺少補救的機會。我們認為未來自學作文以及在家練習,可以藉由自動化 的作文教學系統輔助。而本系統開發作文教學系統之句子流暢度偵測,經由系統回饋的 診斷結果可以讓學生對詞句組合的理解力有所提升,幫助學生寫出較流暢的句子,藉此 提高他們的作文分數。系統所依賴的 N-gram 語言模型,它的特性是計算字詞間組合的 機率,機率越高的話字詞組合的正確性越高也就是越流暢,而語言模型效果相當依賴大 型的訓練語料,這是語言模型然能待克服的缺點,例如資料稀疏(Data spar...
متن کامل